Respiratory epithelial gene expression in patients with mild and severe cystic fibrosis lung disease.

نویسندگان

  • Jerry M Wright
  • Christian A Merlo
  • Jeffrey B Reynolds
  • Pamela L Zeitlin
  • Joe G N Garcia
  • William B Guggino
  • Michael P Boyle
چکیده

Despite having identical cystic fibrosis transmembrane conductance regulator genotypes, individuals with DeltaF508 homozygous cystic fibrosis (CF) demonstrate significant variability in severity of pulmonary disease. This investigation used high-density oligonucleotide microarray analysis of nasal respiratory epithelium to investigate the molecular basis of phenotypic differences in CF by (1) identifying differences in gene expression between DeltaF508 homozygotes in the most severe 20th percentile of lung disease by forced expiratory volume in 1 s and those in the most mild 20th percentile of lung disease and (2) identifying differences in gene expression between DeltaF508 homozygotes and age-matched non-CF control subjects. Microarray results from 23 participants (12 CF, 11 non-CF) met the strict quality control guidelines and were used for final data analysis. A total of 652 of the 11,867 genes identified as present in 75% of the samples were significantly differentially expressed in one of the three disease phenotypes: 30 in non-CF, 53 in mild CF, and 569 in severe CF. An analysis of genes differentially expressed by severity of CF lung disease demonstrated significant upregulation in severe CF of genes involved in protein ubiquination (P < 0.04), mitochondrial oxidoreductase activity (P < 0.01), and lipid metabolism (P < 0.03). Analysis of genes with decreased expression in patients with CF compared with control subjects demonstrated significant downregulation of genes involved in airway defense (P < 0.047) and protein metabolism (P < 0.048). This study suggests that differences in CF lung phenotype are associated with differences in expression of genes involving airway defense, protein ubiquination, and mitochondrial oxidoreductase activity and identifies specific new candidate modifiers of the CF phenotype.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review of The Role of The Microbiome on Immune Responses and Its Association With Cystic Fibrosis

In recent years, the microbiome has been recognized as a key regulator of immune responses. Evidence suggests that changes in the microbiome can lead to chronic disease and even exacerbation of the disease. Impairment of innate immunity resulting from microbial incompatibility may worsen host susceptibility to infection and exacerbate chronic lung diseases. Specific microbes play a key role in ...

متن کامل

Cystic fibrosis from genotype to phenotype: review article

Cystic fibrosis (CF) is the most common autosomal recessive genetic disease, which is caused by defection in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. CFTR gene codes chloride channels to modulate the homeostasis of epithelial environments. Defective CFTR affects various organs such as the lungs, pancreas, intestine, liver and skin; however, lung impairment is the mai...

متن کامل

Investigating the Effect of TNF α (-863) and TNF α (-308) genes Polymorphism on the Progression of Disease in Patients with Cystic Fibrosis

Background: Recent studies have shown that the course of cystic fibrosis in patients with this disease differs despite the same mutation in CFTR gene. We aimed to investigate the role of polymorphism in TNF α (-308) and TNF α (-863), and its effect on the phenotype of the patients with cystic fibrosis and progression of disease. Materials and Methods:...

متن کامل

Severe deficiency of cystic fibrosis transmembrane conductance regulator messenger RNA carrying nonsense mutations R553X and W1316X in respiratory epithelial cells of patients with cystic fibrosis.

Cystic fibrosis (CF) is the most common, lethal inherited disorder in the Caucasian population. We have recently reported two African-American patients with nonsense mutations in each CF gene and severe pancreatic disease, but mild pulmonary disease. In order to examine the effect of these nonsense mutations on CF gene expression, bronchial and nasal epithelial cells were obtained from one of t...

متن کامل

Nonsense mutation R1162X of the cystic fibrosis transmembrane conductance regulator gene does not reduce messenger RNA expression in nasal epithelial tissue.

Cystic fibrosis (CF) patients bearing the premature translation termination mutation (nonsense mutation) W1282X present severe pulmonary and pancreatic disease, whereas patients carrying other nonsense mutations such as G542X, R553X, S1255X, R1162X, and W1316X show a severe pancreatic but mild pulmonary illness. CF gene expression was found absent in respiratory tissues with mutations R553X and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of respiratory cell and molecular biology

دوره 35 3  شماره 

صفحات  -

تاریخ انتشار 2006